Copied to
clipboard

G = C23.48D20order 320 = 26·5

19th non-split extension by C23 of D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.48D20, (C2×C8)⋊21D10, (C2×D20)⋊26C4, (C2×C40)⋊36C22, D20.38(C2×C4), (C2×C4).153D20, C20.417(C2×D4), (C2×C20).173D4, D205C439C2, C2.4(C8⋊D10), (C2×M4(2))⋊11D5, C4⋊Dic548C22, C22.57(C2×D20), C10.20(C8⋊C22), C20.74(C22⋊C4), (C10×M4(2))⋊19C2, C20.174(C22×C4), (C2×C20).773C23, (C22×D20).16C2, (C22×C4).139D10, (C22×C10).101D4, C54(C23.37D4), C4.13(D10⋊C4), (C2×D20).206C22, C23.21D1016C2, (C22×C20).188C22, C22.28(D10⋊C4), C4.73(C2×C4×D5), (C2×C4).53(C4×D5), C4.110(C2×C5⋊D4), (C2×C20).281(C2×C4), (C2×C10).163(C2×D4), (C2×C4).76(C5⋊D4), C10.99(C2×C22⋊C4), C2.30(C2×D10⋊C4), (C2×C4).722(C22×D5), (C2×C10).85(C22⋊C4), SmallGroup(320,758)

Series: Derived Chief Lower central Upper central

C1C20 — C23.48D20
C1C5C10C20C2×C20C2×D20C22×D20 — C23.48D20
C5C10C20 — C23.48D20
C1C22C22×C4C2×M4(2)

Generators and relations for C23.48D20
 G = < a,b,c,d,e | a2=b2=c2=1, d20=c, e2=cb=bc, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd19 >

Subgroups: 1006 in 190 conjugacy classes, 63 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C24, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, D4⋊C4, C42⋊C2, C2×M4(2), C22×D4, C40, D20, D20, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×C10, C23.37D4, C4×Dic5, C4⋊Dic5, C23.D5, C2×C40, C5×M4(2), C2×D20, C2×D20, C22×C20, C23×D5, D205C4, C23.21D10, C10×M4(2), C22×D20, C23.48D20
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, D10, C2×C22⋊C4, C8⋊C22, C4×D5, D20, C5⋊D4, C22×D5, C23.37D4, D10⋊C4, C2×C4×D5, C2×D20, C2×C5⋊D4, C8⋊D10, C2×D10⋊C4, C23.48D20

Smallest permutation representation of C23.48D20
On 80 points
Generators in S80
(2 22)(4 24)(6 26)(8 28)(10 30)(12 32)(14 34)(16 36)(18 38)(20 40)(42 62)(44 64)(46 66)(48 68)(50 70)(52 72)(54 74)(56 76)(58 78)(60 80)
(1 73)(2 74)(3 75)(4 76)(5 77)(6 78)(7 79)(8 80)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(21 53)(22 54)(23 55)(24 56)(25 57)(26 58)(27 59)(28 60)(29 61)(30 62)(31 63)(32 64)(33 65)(34 66)(35 67)(36 68)(37 69)(38 70)(39 71)(40 72)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 52 53 40)(2 39 54 51)(3 50 55 38)(4 37 56 49)(5 48 57 36)(6 35 58 47)(7 46 59 34)(8 33 60 45)(9 44 61 32)(10 31 62 43)(11 42 63 30)(12 29 64 41)(13 80 65 28)(14 27 66 79)(15 78 67 26)(16 25 68 77)(17 76 69 24)(18 23 70 75)(19 74 71 22)(20 21 72 73)

G:=sub<Sym(80)| (2,22)(4,24)(6,26)(8,28)(10,30)(12,32)(14,34)(16,36)(18,38)(20,40)(42,62)(44,64)(46,66)(48,68)(50,70)(52,72)(54,74)(56,76)(58,78)(60,80), (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,52,53,40)(2,39,54,51)(3,50,55,38)(4,37,56,49)(5,48,57,36)(6,35,58,47)(7,46,59,34)(8,33,60,45)(9,44,61,32)(10,31,62,43)(11,42,63,30)(12,29,64,41)(13,80,65,28)(14,27,66,79)(15,78,67,26)(16,25,68,77)(17,76,69,24)(18,23,70,75)(19,74,71,22)(20,21,72,73)>;

G:=Group( (2,22)(4,24)(6,26)(8,28)(10,30)(12,32)(14,34)(16,36)(18,38)(20,40)(42,62)(44,64)(46,66)(48,68)(50,70)(52,72)(54,74)(56,76)(58,78)(60,80), (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,52,53,40)(2,39,54,51)(3,50,55,38)(4,37,56,49)(5,48,57,36)(6,35,58,47)(7,46,59,34)(8,33,60,45)(9,44,61,32)(10,31,62,43)(11,42,63,30)(12,29,64,41)(13,80,65,28)(14,27,66,79)(15,78,67,26)(16,25,68,77)(17,76,69,24)(18,23,70,75)(19,74,71,22)(20,21,72,73) );

G=PermutationGroup([[(2,22),(4,24),(6,26),(8,28),(10,30),(12,32),(14,34),(16,36),(18,38),(20,40),(42,62),(44,64),(46,66),(48,68),(50,70),(52,72),(54,74),(56,76),(58,78),(60,80)], [(1,73),(2,74),(3,75),(4,76),(5,77),(6,78),(7,79),(8,80),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(21,53),(22,54),(23,55),(24,56),(25,57),(26,58),(27,59),(28,60),(29,61),(30,62),(31,63),(32,64),(33,65),(34,66),(35,67),(36,68),(37,69),(38,70),(39,71),(40,72)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,52,53,40),(2,39,54,51),(3,50,55,38),(4,37,56,49),(5,48,57,36),(6,35,58,47),(7,46,59,34),(8,33,60,45),(9,44,61,32),(10,31,62,43),(11,42,63,30),(12,29,64,41),(13,80,65,28),(14,27,66,79),(15,78,67,26),(16,25,68,77),(17,76,69,24),(18,23,70,75),(19,74,71,22),(20,21,72,73)]])

62 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H5A5B8A8B8C8D10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222222224444444455888810···101010101020···202020202040···40
size111122202020202222202020202244442···244442···244444···4

62 irreducible representations

dim11111122222222244
type++++++++++++++
imageC1C2C2C2C2C4D4D4D5D10D10C4×D5D20C5⋊D4D20C8⋊C22C8⋊D10
kernelC23.48D20D205C4C23.21D10C10×M4(2)C22×D20C2×D20C2×C20C22×C10C2×M4(2)C2×C8C22×C4C2×C4C2×C4C2×C4C23C10C2
# reps14111831242848428

Matrix representation of C23.48D20 in GL6(𝔽41)

4000000
0400000
001000
000100
002323400
003838040
,
4000000
0400000
001000
000100
000010
000001
,
100000
010000
0040000
0004000
0000400
0000040
,
40230000
010000
0011633
0000740
00187640
001719134
,
1180000
9400000
00343478
00404021
00222111
00303177

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,23,38,0,0,0,1,23,38,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,23,1,0,0,0,0,0,0,1,0,18,17,0,0,1,0,7,19,0,0,6,7,6,1,0,0,33,40,40,34],[1,9,0,0,0,0,18,40,0,0,0,0,0,0,34,40,22,30,0,0,34,40,21,31,0,0,7,2,1,7,0,0,8,1,1,7] >;

C23.48D20 in GAP, Magma, Sage, TeX

C_2^3._{48}D_{20}
% in TeX

G:=Group("C2^3.48D20");
// GroupNames label

G:=SmallGroup(320,758);
// by ID

G=gap.SmallGroup(320,758);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,254,387,142,1123,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^20=c,e^2=c*b=b*c,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^19>;
// generators/relations

׿
×
𝔽